寄云科技CEO時(shí)培昕:數(shù)據(jù)驅(qū)動(dòng)高端制造數(shù)字化轉(zhuǎn)型

作者: 2022年05月16日 來(lái)源: 瀏覽量:
字號(hào):T | T
寄云科技CEO時(shí)培昕受邀做客2022智能制造與工業(yè)互聯(lián)網(wǎng)系列公益聯(lián)播第二期“數(shù)字化咨詢(xún)”第四講,以《數(shù)據(jù)驅(qū)動(dòng)-高端制造數(shù)字化轉(zhuǎn)型》為課題做深入解讀。時(shí)博士分別從工業(yè)數(shù)字化轉(zhuǎn)型、高端制造的數(shù)字化轉(zhuǎn)型的挑戰(zhàn)、高端
     寄云科技CEO時(shí)培昕受邀做客2022智能制造與工業(yè)互聯(lián)網(wǎng)系列公益聯(lián)播第二期“數(shù)字化咨詢(xún)”第四講,以《數(shù)據(jù)驅(qū)動(dòng)-高端制造數(shù)字化轉(zhuǎn)型》為課題做深入解讀。時(shí)博士分別從工業(yè)數(shù)字化轉(zhuǎn)型、高端制造的數(shù)字化轉(zhuǎn)型的挑戰(zhàn)、高端制造的數(shù)字化轉(zhuǎn)型案例分享和寄云NeuSeer工業(yè)互聯(lián)網(wǎng)平臺(tái)四方面展開(kāi)了精彩講解。

1、溯源:工業(yè)數(shù)字化轉(zhuǎn)型的本質(zhì)

當(dāng)前,中國(guó)工業(yè)正進(jìn)入轉(zhuǎn)型升級(jí)、高質(zhì)量發(fā)展的重要時(shí)期。數(shù)據(jù)已經(jīng)成為未來(lái)企業(yè)核心價(jià)值與競(jìng)爭(zhēng)力,是工業(yè)數(shù)字化轉(zhuǎn)型的核心生產(chǎn)要素。企業(yè)數(shù)字化的過(guò)程,實(shí)際上就是數(shù)據(jù)價(jià)值釋放過(guò)程,但邁向數(shù)字化轉(zhuǎn)型成功之路充滿(mǎn)挑戰(zhàn)。

時(shí)培昕博士指出,工業(yè)數(shù)字化轉(zhuǎn)型是數(shù)字化轉(zhuǎn)型的一個(gè)子集,通過(guò)利用先進(jìn)的工業(yè)互聯(lián)網(wǎng)技術(shù)對(duì)現(xiàn)有的資產(chǎn)、過(guò)程、產(chǎn)品進(jìn)行轉(zhuǎn)變,實(shí)現(xiàn)運(yùn)營(yíng)指標(biāo)的提升,走向卓越運(yùn)營(yíng)。

工業(yè)數(shù)字化轉(zhuǎn)型的關(guān)鍵本質(zhì)就是運(yùn)營(yíng)指標(biāo)的提升。卓越的運(yùn)營(yíng),是通過(guò)一系列關(guān)鍵指標(biāo)的優(yōu)化,更快、更有效地改善制造運(yùn)營(yíng)。其應(yīng)用場(chǎng)景涵蓋裝配、加工、預(yù)測(cè)性維護(hù)、績(jī)效管理、質(zhì)量管理以及可持續(xù)發(fā)展這一系列的制造環(huán)節(jié),甚至延展到產(chǎn)業(yè)鏈的上下游,為工業(yè)企業(yè)帶來(lái)可衡量的、顯著的效益。

工業(yè)數(shù)字化轉(zhuǎn)型是通向未來(lái)工廠的交通工具。未來(lái)工廠的成熟度標(biāo)準(zhǔn),可以通過(guò)初始化階段、可管理階段、明確性階段、定量化管理階段、優(yōu)化階段等五個(gè)成熟度標(biāo)準(zhǔn)為工業(yè)企業(yè)對(duì)自身的數(shù)字化進(jìn)程提供一個(gè)有據(jù)可循的科學(xué)體系。第一,初始化階段需要人為大量干預(yù),過(guò)程不可預(yù)測(cè)且結(jié)果不確定,被動(dòng)式響應(yīng);第二,可管理階段,需要根據(jù)項(xiàng)目來(lái)劃分過(guò)程,同樣是被動(dòng)式響應(yīng);第三,明確性階段,是依照組織來(lái)劃分過(guò)程,能進(jìn)行主動(dòng)式響應(yīng);第四,定量化管理階段,過(guò)程能夠測(cè)量、結(jié)果也是能控制的;第五,優(yōu)化階段,集中于持續(xù)的過(guò)程優(yōu)化。


1.png

2、高端制造數(shù)字化轉(zhuǎn)型的五大挑戰(zhàn)

制造業(yè)是工業(yè)數(shù)字化的重心。制造業(yè)作為國(guó)家經(jīng)濟(jì)命脈所系,是立國(guó)之本、強(qiáng)國(guó)之基,把制造業(yè)高質(zhì)量發(fā)展作為主攻方向,支撐制造資源泛在連接、彈性供給和高效配置,提升制造業(yè)在全球價(jià)值鏈分工的地位,正成為全球新一輪產(chǎn)業(yè)變革的重要方向。對(duì)制造業(yè)而言,數(shù)字化轉(zhuǎn)型能夠產(chǎn)生強(qiáng)大的蝶變效應(yīng),是關(guān)乎生存和發(fā)展的“必修課”,而非“選修課”。

高端制造作為復(fù)雜制造業(yè),有著供應(yīng)鏈多樣化、生產(chǎn)工藝復(fù)雜度高和生產(chǎn)設(shè)備復(fù)雜度高等顯著特點(diǎn),其要求是精準(zhǔn)性強(qiáng)、實(shí)時(shí)性高、靈活性大,可預(yù)測(cè)、也可優(yōu)化。因而,數(shù)字化轉(zhuǎn)型、智能化升級(jí)是高端制造業(yè)必然的發(fā)展趨勢(shì)。


2.png

當(dāng)前,高端制造數(shù)字化的轉(zhuǎn)型主要有五大挑戰(zhàn):

生產(chǎn)過(guò)程數(shù)字化程度不高。數(shù)據(jù)采集不夠全面,缺乏生產(chǎn)設(shè)備、生產(chǎn)環(huán)境的實(shí)時(shí)數(shù)據(jù)采集、以及生產(chǎn)過(guò)程的實(shí)時(shí)記錄、以及生產(chǎn)環(huán)節(jié)之間的銜接記錄等足夠的數(shù)據(jù)支撐。

數(shù)據(jù)離散化程度高,IT和OT分離。面對(duì)跨領(lǐng)域、跨部門(mén)的數(shù)據(jù)優(yōu)化和分析,進(jìn)而實(shí)現(xiàn)優(yōu)化生產(chǎn)指標(biāo)、庫(kù)存指標(biāo)、質(zhì)量指標(biāo)的時(shí)候,需要從花費(fèi)大量的時(shí)間從不同的IT和OT 系統(tǒng)中提取相應(yīng)數(shù)據(jù),進(jìn)行一系列瑣碎和標(biāo)準(zhǔn)化的數(shù)據(jù)分析。

缺少全生命周期的數(shù)據(jù)管理能力。從研發(fā)設(shè)計(jì)到生產(chǎn)制造,再到客戶(hù)服務(wù),急需數(shù)字化的一個(gè)基把整個(gè)企業(yè)生命周期里的數(shù)據(jù)串聯(lián)起來(lái),實(shí)現(xiàn)全流程數(shù)據(jù)管理。

海量數(shù)據(jù)的采集和處理。隨著數(shù)據(jù)規(guī)模越來(lái)越龐大、數(shù)據(jù)類(lèi)型越來(lái)越豐富,以及數(shù)據(jù)實(shí)時(shí)分析需求越來(lái)越高,無(wú)論指標(biāo)計(jì)算還是深度分析,企業(yè)如何加速實(shí)現(xiàn)數(shù)據(jù)價(jià)值依然是其面臨的極大考驗(yàn)。

數(shù)據(jù)分析離智能化目標(biāo)相去甚遠(yuǎn)。目前的數(shù)據(jù)分析主要以統(tǒng)計(jì)和對(duì)比為主,缺少結(jié)合領(lǐng)域知識(shí)的診斷、預(yù)測(cè)和優(yōu)化分析。從海量多樣性數(shù)據(jù)中獲取有價(jià)值的關(guān)鍵數(shù)據(jù),采用人工智能方法進(jìn)行數(shù)據(jù)分析,是提升智能化水平的未來(lái)趨勢(shì)。

時(shí)博士指出:高端制造的數(shù)字化轉(zhuǎn)型是基于數(shù)據(jù)智能的指標(biāo)優(yōu)化。即通過(guò)數(shù)據(jù)智能實(shí)現(xiàn)可量化的生產(chǎn)、經(jīng)營(yíng)以及資產(chǎn)性能指標(biāo)優(yōu)化。利用工業(yè)互聯(lián)網(wǎng)把不同的IT和OT數(shù)據(jù)充分融合,在數(shù)據(jù)平臺(tái)上構(gòu)建起來(lái)一系列指標(biāo)優(yōu)化的能力。這個(gè)指標(biāo)不僅包含底層設(shè)備的可靠性指標(biāo),oee指標(biāo)等,還要包括生產(chǎn)過(guò)程中的產(chǎn)能、質(zhì)量效率,以及企業(yè)的經(jīng)營(yíng)指標(biāo)。 所有指標(biāo)的優(yōu)化都基于對(duì)不同領(lǐng)域、不同部門(mén)、不同環(huán)節(jié)的數(shù)據(jù)集成和分析,進(jìn)而來(lái)達(dá)到上述提到高端制造精準(zhǔn)性強(qiáng)、實(shí)時(shí)性高、靈活性大,可預(yù)測(cè)、可優(yōu)化的要求。

3、高端制造數(shù)字化轉(zhuǎn)型有路可循

通過(guò)近幾年工業(yè)數(shù)字化應(yīng)用實(shí)踐和思考,寄云科技已逐漸看到高端制造數(shù)字化轉(zhuǎn)型的方向和著力點(diǎn)。

高端制造中極為復(fù)雜且精密的半導(dǎo)體行業(yè)為例,面對(duì)半導(dǎo)體制造的關(guān)鍵生產(chǎn)步驟上千個(gè)、每道工序的工藝參數(shù)多達(dá)數(shù)千個(gè)、每道工序良率要求99.99%以上等顯著特點(diǎn),如何有效對(duì)海量多樣性數(shù)據(jù)的分析處理,以及更好控制生產(chǎn)過(guò)程與品質(zhì)成為巨大挑戰(zhàn)。

時(shí)博士指出,針對(duì)于類(lèi)似半導(dǎo)體的這類(lèi)復(fù)雜性高端制造行業(yè)的數(shù)字化轉(zhuǎn)型,構(gòu)建以信息技術(shù)和自動(dòng)化技術(shù)來(lái)構(gòu)建IT和OT 高度融合的半導(dǎo)體智能化應(yīng)用至關(guān)重要。即從設(shè)備端的海量、多樣性數(shù)據(jù)中獲取到關(guān)鍵的、可用的數(shù)據(jù),通過(guò)大數(shù)據(jù)、物聯(lián)網(wǎng)和人工智能的數(shù)據(jù)分析,構(gòu)建一系列半導(dǎo)體行業(yè)的智能應(yīng)用,提升設(shè)備管理能力、可靠性、幫助實(shí)時(shí)預(yù)測(cè)生產(chǎn)質(zhì)量、加速配方優(yōu)化效率以及提供標(biāo)準(zhǔn)通信及控制能力。


3.png

基于NeuSeer工業(yè)互聯(lián)網(wǎng)平臺(tái)產(chǎn)品,寄云科技為半導(dǎo)體裝備企業(yè)提供從數(shù)據(jù)采集、數(shù)據(jù)管理、數(shù)據(jù)分析和數(shù)據(jù)可視化的全流程一體化數(shù)據(jù)服務(wù)能力。在此基礎(chǔ)上形成了設(shè)備狀態(tài)管理,設(shè)備監(jiān)控,設(shè)備告警、配方管理,制程管理,制程分析等應(yīng)用,并可進(jìn)一步提供質(zhì)量分析、配方參數(shù)優(yōu)化,虛擬量測(cè)和預(yù)測(cè)性維護(hù)等擴(kuò)展智能應(yīng)用,以有效實(shí)現(xiàn)企業(yè)對(duì)生產(chǎn)全局可追溯、可評(píng)價(jià)和數(shù)字化經(jīng)營(yíng)決策,加強(qiáng)設(shè)備智能管控可視化管理,提升綜合良品率,以及減少設(shè)備非故障停機(jī)和智能調(diào)度管控。

智能應(yīng)用:裝備智能管控

基于寄云工業(yè)物聯(lián)網(wǎng)平臺(tái)和工業(yè)大數(shù)據(jù)平臺(tái),為多種半導(dǎo)體裝備提供設(shè)備狀態(tài)管理,設(shè)備監(jiān)控,設(shè)備告警,配方管理,制程管理,制程分析等應(yīng)用,幫助實(shí)現(xiàn)了3000點(diǎn)/秒/機(jī)臺(tái)海量數(shù)據(jù)的寫(xiě)入和查詢(xún),關(guān)鍵工藝指標(biāo)的實(shí)時(shí)監(jiān)測(cè),多臺(tái)設(shè)備的集群管理,以及故障檢測(cè)與分類(lèi)、關(guān)鍵輸出指標(biāo)的穩(wěn)定性控制等。


4.jpg

智能應(yīng)用:預(yù)測(cè)性維護(hù) PdM

基于FDC輸出數(shù)據(jù),良率數(shù)據(jù)以及量測(cè)數(shù)據(jù),利用MVA技術(shù)開(kāi)發(fā)預(yù)測(cè)模型,根據(jù)預(yù)測(cè)故障發(fā)生時(shí)間,獲得估計(jì)的故障發(fā)生時(shí)間(MTTF)范圍和預(yù)測(cè)的可信度。提前做出應(yīng)對(duì)計(jì)劃,減少計(jì)劃外downtime以及wafer 損傷風(fēng)險(xiǎn)。


5.png

智能應(yīng)用:虛擬量測(cè) VM

利用工藝流程和晶圓狀態(tài)信息(包括upstream量測(cè)和/或傳感器數(shù)據(jù))預(yù)測(cè)工藝后量測(cè)結(jié)果。使用人工智能算法對(duì)芯片制造工藝參數(shù)和量測(cè)結(jié)果進(jìn)行建模分析,包括厚度、缺陷密度/數(shù)量、方塊電阻、以及在線電測(cè)試結(jié)果等。


6.png

智能應(yīng)用:智能配方優(yōu)化 ROS

通過(guò)人工智能算法加快配方開(kāi)發(fā)速度,減少可變性并拓寬工藝窗口,可用于優(yōu)化單個(gè)腔室和整個(gè)設(shè)備,根據(jù)對(duì)結(jié)果的預(yù)測(cè)自動(dòng)修改配方參數(shù)或選擇控制參數(shù),提高加工性能和生產(chǎn)效率。


7.png

因此,針對(duì)高端制造企業(yè)數(shù)字化能力的構(gòu)建,不得不提到工業(yè)互聯(lián)網(wǎng)平臺(tái)。寄云科技認(rèn)為,工業(yè)互聯(lián)網(wǎng)平臺(tái)作為支撐工業(yè)企業(yè)數(shù)字化轉(zhuǎn)型的“新基座”,是數(shù)字化轉(zhuǎn)型的標(biāo)配能力,能夠起到加速整個(gè)數(shù)據(jù)價(jià)值傳遞過(guò)程的作用。

制造企業(yè)通過(guò)工業(yè)互聯(lián)網(wǎng)平臺(tái)應(yīng)用,從設(shè)備端匯總來(lái)自不同環(huán)節(jié)的IT/OT數(shù)據(jù),通過(guò)數(shù)據(jù)采集和集成,數(shù)據(jù)清洗和治理,數(shù)據(jù)的統(tǒng)一存儲(chǔ),以及數(shù)據(jù)的分析和建模,再通過(guò)快速的應(yīng)用開(kāi)發(fā)來(lái)去構(gòu)建設(shè)備管理、生產(chǎn)管理、以及經(jīng)營(yíng)管理三個(gè)層面的指標(biāo)優(yōu)化能力。這三層通過(guò)釋放數(shù)據(jù)的價(jià)值環(huán)環(huán)相扣,最終實(shí)現(xiàn)企業(yè)經(jīng)營(yíng)利潤(rùn)的提升以及經(jīng)營(yíng)風(fēng)險(xiǎn)的規(guī)避。


8.png

高端制造行業(yè)是寄云科技產(chǎn)品和服務(wù)的主戰(zhàn)場(chǎng)。基于數(shù)據(jù)智能的NeuSeer工業(yè)互聯(lián)網(wǎng),能夠有效的幫助高端制造的客戶(hù)改進(jìn)設(shè)備可靠性提升、質(zhì)量異常診斷和預(yù)測(cè)、產(chǎn)能分析和預(yù)測(cè)、供應(yīng)鏈優(yōu)化、和降低運(yùn)維成本等核心價(jià)值及關(guān)鍵指標(biāo),構(gòu)建一系列針對(duì)高端制造的過(guò)程控制和經(jīng)營(yíng)決策能力,創(chuàng)造客戶(hù)價(jià)值

1、經(jīng)營(yíng)指標(biāo)優(yōu)化:實(shí)時(shí)生產(chǎn)決策

對(duì)于大批量的工業(yè)品生產(chǎn),連續(xù)生產(chǎn)至關(guān)重要,它不僅需要大量的自動(dòng)化設(shè)備以及全流程的過(guò)程控制系統(tǒng),實(shí)現(xiàn)多個(gè)流程的無(wú)人自動(dòng)化生產(chǎn),更需要結(jié)合設(shè)備狀態(tài)數(shù)據(jù)的實(shí)時(shí)分析,對(duì)設(shè)備可靠性、關(guān)鍵部件的使用壽命進(jìn)行預(yù)測(cè),通過(guò)優(yōu)化設(shè)備參數(shù)和維護(hù)策略來(lái)避免非計(jì)劃停機(jī)帶來(lái)的生產(chǎn)中斷;同時(shí),還需要通過(guò)量化的生產(chǎn)效率指標(biāo),持續(xù)減少自動(dòng)化過(guò)程中的人為不確定因素,提高產(chǎn)能和生產(chǎn)效率;

在汽車(chē)零配件行業(yè),寄云科技與全球500強(qiáng)企業(yè)麥格納集團(tuán)下屬格特拉克針對(duì)生產(chǎn)設(shè)備運(yùn)行效率的優(yōu)化展開(kāi)合作,依托寄云科技NeuSeer工業(yè)互聯(lián)網(wǎng)平臺(tái),通過(guò)采集設(shè)備實(shí)時(shí)狀態(tài)數(shù)據(jù),結(jié)合ERP和MES的工藝數(shù)據(jù),實(shí)現(xiàn)秒級(jí)的生產(chǎn)指標(biāo)的實(shí)時(shí)計(jì)算,構(gòu)建工藝流程監(jiān)控、關(guān)鍵指標(biāo)監(jiān)控,覆蓋設(shè)備端、工廠層、產(chǎn)線層到集團(tuán)層等不同層面的指標(biāo),打通MES、ERP等OT/IT系統(tǒng)和應(yīng)用,最終幫助客戶(hù)實(shí)現(xiàn)產(chǎn)線所需人員減少,OEE(設(shè)備綜合效率)提升9%,MTBF(平均無(wú)故障工作時(shí)間)增加6%等可量化的可觀收益。


9.png

2、生產(chǎn)指標(biāo)優(yōu)化:工藝和質(zhì)量穩(wěn)定性管控

在電力、化工、有色、醫(yī)藥、半導(dǎo)體等復(fù)雜、連續(xù)、自動(dòng)化的制造過(guò)程,存在著海量工藝控制點(diǎn)和外部影響因素,為了保證產(chǎn)品品質(zhì),需要能夠通過(guò)關(guān)鍵工藝參數(shù)的實(shí)時(shí)監(jiān)控、結(jié)果一致性的管控,實(shí)現(xiàn)快速、自動(dòng)化的根因分析和結(jié)果的預(yù)測(cè)。

在半導(dǎo)體行業(yè),北方華創(chuàng)設(shè)備集群管理系統(tǒng)Advanced Group Controller(AGC)運(yùn)用寄云工業(yè)互聯(lián)網(wǎng)解決方案平臺(tái)套件,提供全流程一體化數(shù)據(jù)服務(wù)能力,形成包括設(shè)備狀態(tài)監(jiān)控,配置管理,制程分析等功能,實(shí)現(xiàn)半導(dǎo)體裝備的高性能實(shí)時(shí)數(shù)據(jù)采集,并有效實(shí)現(xiàn)關(guān)鍵控制指標(biāo)的異常檢測(cè)以及關(guān)鍵輸出指標(biāo)的在線穩(wěn)定性控制。作為完全自主研發(fā),擁有自主知識(shí)產(chǎn)權(quán)的軟件,AGC軟件的研發(fā)使得北方華創(chuàng)的半導(dǎo)體生產(chǎn)設(shè)備具備和國(guó)外競(jìng)爭(zhēng)廠商同等的集群管理軟件,進(jìn)一步提升了產(chǎn)品的競(jìng)爭(zhēng)力。


10.png

3、設(shè)備性能指標(biāo)優(yōu)化:設(shè)備預(yù)測(cè)性維護(hù)

高端裝備的連續(xù)運(yùn)行需要合理的運(yùn)維方案,需要通過(guò)一系列的基于設(shè)備實(shí)時(shí)狀態(tài)的采集和分析,對(duì)設(shè)備的當(dāng)前狀態(tài)進(jìn)行監(jiān)控,提供智能的故障診斷和健康評(píng)估,提供完整的維護(hù)保養(yǎng)和基于壽命預(yù)測(cè)的備件管理。

在油氣行業(yè),某國(guó)內(nèi)陸地石油鉆機(jī)廠商攜手寄云科技以NeuSeer平臺(tái)為基礎(chǔ),構(gòu)建基于設(shè)備實(shí)時(shí)數(shù)據(jù)實(shí)現(xiàn)預(yù)測(cè)性維修的完整方案,有效實(shí)現(xiàn)設(shè)備軟性?xún)r(jià)值的增長(zhǎng)點(diǎn),滿(mǎn)足石油連續(xù)性生產(chǎn)要求。通過(guò)各種實(shí)時(shí)監(jiān)控、定期的計(jì)劃性維修和不定期的視情維修,對(duì)設(shè)備進(jìn)行有效的維護(hù),實(shí)現(xiàn)更精準(zhǔn)的故障匹配和故障預(yù)測(cè),實(shí)現(xiàn)減少人員出差90人次,增加備件銷(xiāo)售3000萬(wàn),助力客戶(hù)向服務(wù)型制造企業(yè)轉(zhuǎn)型。


11.png

智能制造的大背景下,推進(jìn)工業(yè)互聯(lián)網(wǎng)應(yīng)用是國(guó)內(nèi)制造企業(yè)走向高端制造的必由之路。寄云科技將持續(xù)發(fā)揮自身技術(shù)優(yōu)勢(shì)和“數(shù)智”能力,以NeuSeer工業(yè)互聯(lián)網(wǎng)平臺(tái)為“基座”,聚力解決工業(yè)企業(yè)的盲點(diǎn)、痛點(diǎn),為企業(yè)提質(zhì)增效注入新動(dòng)能,幫助中國(guó)高端制造行業(yè)實(shí)現(xiàn)全方位的數(shù)字化轉(zhuǎn)型,推動(dòng)制造業(yè)的可持續(xù)高質(zhì)量發(fā)展,實(shí)現(xiàn)我國(guó)制造強(qiáng)國(guó)的戰(zhàn)略目標(biāo)。

全球化工設(shè)備網(wǎng)(http://m.bhmbl.cn )友情提醒,轉(zhuǎn)載請(qǐng)務(wù)必注明來(lái)源:全球化工設(shè)備網(wǎng)!違者必究.

標(biāo)簽:

分享到:
免責(zé)聲明:1、本文系本網(wǎng)編輯轉(zhuǎn)載或者作者自行發(fā)布,本網(wǎng)發(fā)布文章的目的在于傳遞更多信息給訪問(wèn)者,并不代表本網(wǎng)贊同其觀點(diǎn),同時(shí)本網(wǎng)亦不對(duì)文章內(nèi)容的真實(shí)性負(fù)責(zé)。
2、如涉及作品內(nèi)容、版權(quán)和其它問(wèn)題,請(qǐng)?jiān)?0日內(nèi)與本網(wǎng)聯(lián)系,我們將在第一時(shí)間作出適當(dāng)處理!有關(guān)作品版權(quán)事宜請(qǐng)聯(lián)系:+86-571-88970062